Planning to Build Artificial Intelligence App? These 6 Things You Must Know

Probably you may not have come across these statistics. According to the Narrative Science survey, 38% of enterprises already benefited from using Artificial Intelligence technologies, and the remaining 62% will use those by 2021. Artificial Intelligence is a trending topic. There is a full of success stories around it.

In fact, Artificial Intelligence is not an independently built technology. It needs big data to extract the right pieces of information from millions of data sets. It needs machine learning to create algorithms.

AI needs deep learning to understand human behavioral patterns. When it comes to machine learning, expensive computing resources and cloud technologies were a barrier to build ML solutions.

But today that is far away from adaptability. On the other hand, big data technologies have gone easier to be built and gain deep business insights. We can see many mobile app development companies in the USA, and big data companies USA who widened their service portfolio with AI services to leverage trends.

If you’re looking forward to building an Artificial Intelligence application, you require considering 6 essential things that I am going to talk about here.

Things to consider before building an Artificial Intelligence App

1. Artificial Intelligence Requires Big Data

As said above, AI requires big data. In fact, AI must be trained on a vast and comprehensive data set. The result goes better when the data set is bigger enough. Every training data set for a machine learning model consists of millions or even billions of entries.

Read Also: Best Machine Learning Tools & Frameworks for Mobiles

2. Most Artificial Intelligence applications are real-time

Most enterprises need near real-time AI. But most AI applications innovated today are real-time. Here is a greatly compiled list of real-time Artificial Intelligence apps in different industries:

  • Facial recognition
  • Speech recognition (voice-to-text)
  • Translation (Google Translate)
  • Product recommendation
  • Fraud detection (in real-time)
  • Personal assistants (Siri, Cortana)
  • Autonomous vehicles
  • Chatbots

Near real-time Artificial Intelligence apps:

  • Medical AI assistants
  • Fraud detection systems
  • Sales and marketing automation tools

You decide which AI you need to empower your enterprise.

Read Also: How IoT is Revolutionizing Mobile App Development

3. Artificial Intelligence needs Cloud

Machine learning is everything about feeding the right piece of information to the machine. In fact, it is the same as training a newly joined employee.

So there is a need for substantial computing resources during the training stage. Earlier it was a big challenge even for big organizations to buy servers. But the cloud technology made life a lot easier for even startups.

If you’re looking to build an AI application, seriously think about this as well.

Read Also: Top App Development Trends for 2021

4. AI application is not ML algorithm

Undoubtedly, a machine learning-powered algorithm is the backbone of any AI application. But that is not just enough. There are many other elements that influence the success of any AI application:

Training data sets

If you don’t have filtered data sets or your data sets are of low quality, your AI application is likely to make frequently wrong decisions. You probably have observed such wrong results if you ever used chatbots or any digital personal assistant.

Read Also: How Wearable Technology is Revolutionizing the Mobile App Development space?

Training process

Training machines can be in two forms, either supervised training or unsupervised training. In supervised training, a machine is trained with both the training data and the intended output.

In unsupervised training, the output is left to a machine, which the machine (model) has to decide from the trends and correlative data included in the inputted data.

Integration into daily business processes

You can expect the best performance from your AI application only when it understood your business well. To generate practical values, your application should become an integral part of daily business processes. To get done it, think about integrating your AI application with other corporate systems in the organization.

5. You must retrain ML-powered AI applications

AI applications are not like built once and deployed for years. Unless it is super artificial intelligence, machines need continual training whether it needs to hone its skill or play a different task.

Chatbots kind of applications sharpen their skills depending on the conversations they involved in before. But we can’t expect accuracy in the outputs. The effort to hone their skills creates better value.

Read Also: What is a Chatbot and what can it do?

Machine learning model requires continual retraining due to:

  • Internal changes – market extension, changed organizational structure, restructured business processes, changed corporate strategy, goals, and KPIs
  • External changes – new trends, and new competitors

6. ML solution should be verified and monitored

ML-based systems are not free from mistakes. Sometimes they may recommend irrelevant products (minor) or not notice fraud cases in banking (major). So there is a need for verification and monitoring of every new case and every new activity respectively.

In Conclusion

Artificial intelligence is already a buzzword. If you’re serious enough to achieve a competitive advantage, you should build a serious AI solution. Collaborating with expert AI development companies is a fantabulous benefit if you’re new to this future technology.

Leave a Comment